Pairs of Mutually Annihilating Operators

نویسندگان

  • Vitalij M. Bondarenko
  • Tatiana G. Gerasimova
  • Vladimir V. Sergeichuk
چکیده

Pairs (A,B) of mutually annihilating operators AB = BA = 0 on a finite dimensional vector space over an algebraically closed field were classified by Gelfand and Ponomarev [Russian Math. Surveys 23 (1968) 1–58] by method of linear relations. The classification of (A,B) over any field was derived by Nazarova, Roiter, Sergeichuk, and Bondarenko [J. Soviet Math. 3 (1975) 636–654] from the classification of finitely generated modules over a dyad of two local Dedekind rings. We give canonical matrices of (A,B) over any field in an explicit form and our proof is constructive: the matrices of (A,B) are sequentially reduced to their canonical form by similarity transformations (A,B) 7→ (S−1AS,S−1BS). AMS classification: 15A21.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of Incoherently Coupled Soliton Pairs in Photorefractive Crystals and their Self-Deflection

Propagation of incoherently soliton pairs in photorefractive crystals under steady-state conditions is studied. These soliton states can be generated when the two mutually incoherent optical beams with the same polarization and wavelength incident on the biased photorefractive crystal. Such soliton pairs can exist in bright-bright, dark-dark, gray-gray as well as in bright-dark types. In this p...

متن کامل

Modeling the momentum distributions of annihilating electron-positron pairs in solids

Rights: © 2006 American Physical Society (APS). This is the accepted version of the following article: Makkonen, I. & Hakala, M. & Puska, Martti J. 2006. Modeling the momentum distributions of annihilating electron-positron pairs in solids. Physical Review B. Volume 73, Issue 3. 035103/1-12. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.73.035103, which has been published in final form at ...

متن کامل

Trivially related lax pairs of the Sawada-Kotera equation

We show that a recently introduced Lax pair of the Sawada-Kotera equation is nota new one but is trivially related to the known old Lax pair. Using the so-called trivialcompositions of the old Lax pairs with a differentially constrained arbitrary operators,we give some examples of trivial Lax pairs of KdV and Sawada-Kotera equations.

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008